(本小题满分13分)已知椭圆:的离心率为,过右焦点的直线与相交于,两点,当的斜率为时,坐标原点到的距离为.(1)求椭圆的标准方程;(2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有的的坐标与的方程;若不存在,说明理由,
(本小题满分14分)若是公差不为的等差数列的前项和,且成等比数列。(1)求等比数列的公比;(2)若,求的通项公式;(3)设,是数列的前项和,求使得对所有都成立的最大正整数
(本小题满分12分)已知函数.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)求函数在区间上的最大值和最小值.
(本小题满分12分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数)
(本小题满分12分)某单位建造一间背面靠墙的小房,地面面积为12 m2,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3 m,且不计房屋背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少?
(本小题满分12分)等比数列中,已知(Ⅰ)求数列的通项公式(Ⅱ)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和