(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(1)求恰有两个黑球的概率; (2)记取出红球的个数为随机变量,求的分布列和数学期望.
本题满分10分) 已知函数 (1)判断的单调性并用定义证明; (2)设,若对任意,存在(),使,求实数的最大值.
(本题满分8分) 爱因斯坦提出:“人的差异在于业余时间”.某校要对本校高一学生的周末学习时间进行调查.现从中抽取50个样本进行分析,其频率分布直方图如图所示.记第一组[0,2),第二组[2,4),…,以此类推. (1)根据频率分布直方图,估计高一段学生周末学习的平均时间; (2)为了了解学习时间较少同学的情况,现从第一组、第二组中随机抽取2位同学,问恰有一位同学来自第一组的概率.
(本题满分7分) 已知是第三象限角,且. (1)求的值; (2)设的终边与单位圆交于点,求点的坐标.
. 设集合,. (1)求; (2)若集合满足,求的取值范围.
(本题11分) 如图,在多面体ABCDE中,AE⊥面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1,F为CD中点. (1)求证:EF⊥面BCD; (2)求面CDE与面ABDE所成的二面角的余弦值.(3)求B点到面ECD的距离