给定函数和常数,若恒成立,则称为函数的一个“好数对”;若恒成立,则称为函数的一个“类好数对”.已知函数的定义域为.(1)若是函数的一个“好数对”,且,求;(2)若是函数的一个“好数对”,且当时,,求证:函数在区间上无零点;(3)若是函数的一个“类好数对”,,且函数单调递增,比较与的大小,并说明理由.
【原创】如图,在正方体中 ①求证:平面; ②求证:与平面的交点是的中心(正三角形五心合一,统称中心)
【改编】如图,在三棱锥A-BCD中,底面BCD是边长为2的等边三角形,侧棱AB=AD=,AC=2,O、E、F分别是BD、BC、AC的中点.(1)求证:EF∥平面ABD;(2)求证:AO⊥平面BCD;(3)求三棱锥的体积.
如图,圆内有一点P(—1,2),AB为过点P的弦。(1)当弦AB的倾斜角为135°时,求AB所在的直线方程及|AB|;(2)当弦AB被点P平分时,写出直线AB的方程。
如图,在长方体中,点在棱的延长线上,且. (Ⅰ)求证://平面 ; (Ⅱ)求证:平面平面;
【改编】已知圆:(1)平面上有两点,求过点两点的直线被圆截得的弦长;(2)已知过点的直线平分圆的周长,是直线上的动点,求的最大值.(3) 若是轴上的动点,分别切圆于两点.试问:直线是否恒过定点?如是,求出定点坐标,如不是,说明理由.