如图,在平面直角坐标系中,⊙O的圆心在坐标原点,半径为3.过A(-7,9),B(0,9)的抛物线(a,b,c为常数,且a≠0)与x轴交于D,E (点D在点E右边)两点,连结AD.(1)若点D的坐标为D(3,0).①请直接写出此时直线AD与⊙O的位置关系;②求此时抛物线对应的函数关系式;(2)若直线AD和⊙O相切,求抛物线二次项系数a的值;(3)当直线AD和⊙O相交时,直接写出a的取值范围.
.如图10,在直角△ABC中,∠C=90,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数。
如图11, E 、 F 分别是矩形 A B C D 的对角线 A C 和 B D 上的点,且 A E = D F 。求证: B E = C F
(11·钦州). 如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C (0,4),顶点为. (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
(11·钦州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D. 锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E. (1)求证:AC平分∠DAB; (2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法); (3)若CD=4,AC=4,求垂线段OE的长.
某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示, B C / / A D , B E ⊥ A D ,斜坡 A B 长为26米,坡角 ∠ B A D = 68 ° .为了减缓坡面防止山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡. (1)求改造前坡顶到地面的距离 B E 的长(精确到0.1米); (2)如果改造时保持坡脚 A 不动,坡顶 B 沿 B C 向左移11米到 F 点处,问这样改造能确保安全吗? (参考数据: sin 68 ° ≈ 0 . 93 , cos 68 ° ≈ 0 . 37 , tan 68 ° ≈ 2 . 48 , sin 58 ° 12 ` ≈ 0 . 85 , tan 49 ° 30 ` ≈ 1 . 17 )