某班体育委员小华对本班近期体育测验成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中= ,= ;(2)补全频数分布直方图;(3)班主任准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?
已知抛物线与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且.(1)求抛物线的函数表达式; (2)直接写出直线BC的函数表达式;(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).求:①s与t之间的函数关系式; ②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示);(2)如图2,若AB= BC=kAC,AD =ED=kAE则线段BD与CE的数量关系为 ,∠BMC= (用α表示);(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示).
甲、乙两工程队同时修筑水渠,且两队所修水渠总长度相等.右图是两队所修水渠长度y(米)与修筑时间x(时)的函数图像的一部分.请根据图中信息,解答下列问题:(1)①直接写出甲队在0≤x≤5的时间段内,y与x之间的函数关系式 ; ②直接写出乙队在2≤x≤5的时间段内,y与x之间的函数关系式 ;(2)求开修几小时后,乙队修筑的水渠长度开始超过甲队?(3)如果甲队施工速度不变,乙队在修筑5小时后,施工速度因故减少到5米/时,结果两队同时完成任务,求乙队从开修到完工所修水渠的长度为多少米?
南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离AB长为10海里.此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处?(参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)
如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.