图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学.清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇.已知他们家离学校大门处的骑车距离为15千米.求王真的速度.
在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ; (2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数随自变量的增大而增大的概率为 .
如图,等腰△OAB的顶角∠AOB=30°,点B在轴上,腰OA=4. (1)B点的坐标为: ; (2)画出△OAB关于轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标; (3)求出经过A1点的反比例函数解析式. (注:若涉及无理数,请用根号表示)
先化简,再求值:,其中=-.
已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.