定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.
某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40 元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.
如图,⊙P与扇形OAB的半径OA、OB分别相切于点C、D,与弧AB相切于点E,已知OA=15cm,∠AOB=60°,求图中阴影部分的面积.
已知:如图,以的边为直径的交边于点,且过 点的切线平分边. (1)求证:是的切线; (2)当满足什么条件时,以点、、、 为顶点的四边形是平行四边形?请说明理由.
如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点。(1)求反比例函数的解析式;(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上, 求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由。
一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球,除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.用画树状图或列表的方法,(1)求取出的两个小球上的数字之和为3的概率;(2)求取出的两个小球上的数字之和大于4的概率.