定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.
计算:(1);(2)
已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点). (1)求AB的长; (2)当∠BAD=45°时,求D点的坐标; (3)当点C在线段AB上时,求直线BD的关系式.
已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E. (1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”) (2)若OA<3时(如图2),(1)中的关系是否还成立?为什么? (3)当⊙O过BC中点时(如图3),求CE长.
如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2)在二次函数y=ax2+(a+5)x的图象上. (1)求该二次函数的关系式; (2)点C是否在此二次函数的图象上,说明理由; (3)若点P为直线OC上一个动点,过点P作y轴的平行线交抛物线于点M,问是否存在这样的点P,使得四边形ABMP为平行四边形?若存在,求出此时点P的坐标;若不存在,请说明理由.
已知:E、F是矩形ABCD的对角线AC上的两点,且AE=CF=,连接DE并延长交AB于M,连接BF交CD于N, (1)求证:四边形BMDN是平行四边形; (2)当四边形BMDN是菱形时,求的值.