某住宅小区有一正南朝向的居民楼,如下图,该居民楼的一楼是高6m的小区超市,超市以上是居民住房.在该楼前方15m处准备盖一幢高20m的新楼.已知当地冬季正午的阳光与水平线夹角为32°. (1)超市以上居民住房采光是否受到影响?为什么? (2)若要使居民住房采光不受影响,两楼至少应相距多少米? (结果保留整数,参考数据:sin32o≈,cos32o≈,tan32o≈)
小明在初三复习归纳时发现初中阶段学习了三个非负数,分别是:①;②;③(a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知,求的值.请你利用三个非负数的知识解答这个问题.
解分式方程.
如图, EC=AC,∠BCE=∠DCA,∠A=∠E,求证:BC=DC.
定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这 个封闭图形的等分线。(1)请在如下的三个图形中,分别作一条等分线.圆 平行四边形 等腰三角形(2)请在图中用尺规作图作一条直线,使它即是矩形的等分线,也是圆的等分线.(保留作图痕迹,不写作法)(3)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,点P是边AB上的动点,问是否存在过点P的等分线?若存在,求出AP的长,若不存在,请说明理由.
如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.