已知过原点的动直线 l 与圆 C 1 : x 2 + y 2 - 6 x + 5 = 0 相交于不同的两点 A , B . (1)求圆 C 1 的圆心坐标; (2)求线段 A B 的中点 M 的轨迹 C 的方程; (3)是否存在实数 k ,使得直线 L : y = k x - 4 与曲线 C 只有一个交点?若存在,求出 k 的取值范围;若不存在,说明理由.
解关于x的不等式
解不等式(x+2)2(x+3)(x-2)
已知:a>0 , b>0 , a+b=1,求(a+ )2+(b+ )2的最小值.
已知f(x) = ax + ,若求的范围.
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)(Ⅰ)求函数y=f(x)的表达式;(Ⅱ)若x>0,证明:f(x)>;(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围.