如图,已知抛物线 C 1 : y = 1 4 x 2 ,圆 C 2 : x 2 + ( y - 1 ) 2 = 1 ,过点 P ( t , 0 ) ( t > 0 ) 作不过原点 O 的直线 P A , P B 分别与抛物线 C 1 和圆 C 2 相切, A , B 为切点.
(1)求点 A , B 的坐标; (2)求 △ P A B 注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.
(本小题满分12分)设函数(其中,,).已知时,取得最小值. (1)求函数的解析式; (2)若角满足,且,求的值.
(本小题满分14分)已知,函数. (1)求的单调区间; (2)证明:当时,.
(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点. 直线交椭圆于不同的两点. (1)求椭圆的方程; (2)求的取值范围; (3)若直线不过点,求证:直线与轴围成一个等腰三角形.
(本小题满分14分)若正项数列的前项和为,首项,点()在曲线上.源: (1)求数列的通项公式; (2)设,表示数列的前项和,求证:.
(本小题满分14分) 如图所示,在所有棱长都为的三棱柱中,侧棱,点为棱的中点. (1)求证:∥平面; (2)求四棱锥的体积.