如图,已知抛物线 C 1 : y = 1 4 x 2 ,圆 C 2 : x 2 + ( y - 1 ) 2 = 1 ,过点 P ( t , 0 ) ( t > 0 ) 作不过原点 O 的直线 P A , P B 分别与抛物线 C 1 和圆 C 2 相切, A , B 为切点.
(1)求点 A , B 的坐标; (2)求 △ P A B 注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.
((本小题满分12分)如图,在四棱锥中,底面是矩形.已知.(1)证明平面;(2)求异面直线与所成的角的大小;(3)求二面角的大小.
((本小题满分12分)如图,在棱长为2的正方体中,、分别为、的中点.(1)求证://平面;(2)求证:;(3)求三棱锥的体积.
(本小题满分12分)如图,P是正三角形ABC所在平面外一点,M、N分别是AB和PC的中点,且PA=PB=PC=AB=a。(1)求证:MN是AB和PC的公垂线(2)求异面直线AB和PC之间的距离
(本小题满分10分)已知向量(1)若,求的值; (2)若求的值。
((本题16分) (1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.①求恰有两个区域用红色鲜花的概率;②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).