((本题16分) (1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.①求恰有两个区域用红色鲜花的概率;②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).
已知单调递增的等比数列满足:,且是的等差中项. (1)求数列的通项公式; (2)若,,求使成立的正整数的最小值.
已知向量,向量,函数. (1)求的最小正周期; (2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和.
已知函数 (1)若在是增函数,求的取值范围; (2)已知,对于函数图象上任意不同两点,,其中,直线的斜率为,记,若求证:.
在周长为定值的DDEC中,已知,动点C的运动轨迹为曲线G,且当动点C运动时,有最小值. (1)以DE所在直线为x轴,线段DE的中垂线为y轴建立直角坐标系,求曲线G的方程; (2)直线l分别切椭圆G与圆(其中)于A、B两点,求|AB|的取值范围.
数列的通项,其前n项和为. (1)求; (2)求数列{}的前n项和.