设函数 f ( x ) = e 2 x - a ln x . (Ⅰ)讨论 f ( x ) 的导函数 f ` ( x ) 的零点的个数; (Ⅱ)证明:当 a > 0 时 f ( x ) ≥ 2 a + a ln 2 a .
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.
(本小题满分12分)设函数(1)求的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知,△ABC的面积为的值。
设函数.(Ⅰ)当曲线处的切线斜率;(Ⅱ)求函数的单调区间与极值(Ⅲ)已知方程有三个互不相同的实根0,,且.若对任意的,恒成立,求m的取值范围
等比数列{}的前n项和为,已知对任意的,点均在函数且均为常数)的图像上.(Ⅰ)求r的值(Ⅱ)当b=2时,记,数列的前n项和,求证:
平面直角坐标系中,为坐标原点,给定两点A(1,0)、B(0,-2),点C满足其中、且.(Ⅰ)求点C的轨迹方程;(Ⅱ)设点C的轨迹与双曲线交于两点M、N,且以MN为直径的圆过原点,求证:为定值.