已知过点 A 1 , 0 且斜率为 k 的直线 l 与圆 C : x - 2 2 + y - 3 2 = 1 交于 M , N 两点. (Ⅰ)求 k 的取值范围; (Ⅱ) O M ⇀ · O N ⇀ = 12 ,其中 O 为坐标原点,求 M N .
已知函数f(x)=ex,a,bR,且a>0.(1)若a=2,b=1,求函数f(x)的极值;(2)设g(x)=a (x-1)ex-f(x).当a=1时,对任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
设复数的共轭复数为,已知,(1)求复数及;(2)求满足的复数对应的点的轨迹方程.
已知关于的方程有实数根b.(1)求实数的值.(2)若复数满足. 求z为何值时,|z|有最小值,并求出|z|的最小值.
已知,,(1)求;(2)若,求的模.
已知,求证: