已知过点 A 1 , 0 且斜率为 k 的直线 l 与圆 C : x - 2 2 + y - 3 2 = 1 交于 M , N 两点. (Ⅰ)求 k 的取值范围; (Ⅱ) O M ⇀ · O N ⇀ = 12 ,其中 O 为坐标原点,求 M N .
如图,已知平面,,, 且是的中点,. (1)求证:平面; (2)求证:平面平面; (3)求此多面体的体积.
(本小题满分12分)一工厂生产甲、乙、丙三种样式的杯子,每种样式均有和两种型号,某天的产量如右表(单位:个):按样式分层抽样的方法在这个月生产的杯子中抽取个,其中有甲样式杯子个.
(1)求的值; (2)用分层抽样的方法在甲样式杯子中抽取一个容量为的样本,从这个样本中任取个杯子,求至少有个杯子的概率.
已知函数,. (1)求的值; (2)求的最大值和最小正周期; (3)若,是第二象限的角,求.
已知函数满足如下条件:当时,,且对任 意,都有. (1)求函数的图象在点处的切线方程; (2)求当,时,函数的解析式; (3)是否存在,、、、、,使得等式成立?若存在就求出(、、、、),若不存在,说明理由.
已知定点、,动点,且满足、、 成等差数列. (1)求点的轨迹的方程; (2)若曲线的方程为,过点的直线与曲线相切, 求直线被曲线截得的线段长的最小值.