如图,设椭圆 (a>b>0)的右焦点为F(1,0),A为椭圆的上顶点,椭圆上的点到右焦点的最短距离为1.过F作椭圆的弦PQ,直线AP,AQ分别交直线xy2=0于点M,N.(Ⅰ)求椭圆的方程;(Ⅱ)求当|MN|最小时直线PQ的方程.
已知△ABC的周长为6,角A,B,C所对的边a,b,c成等比数列 (1)求角B及边b的最大值; (2)设△ABC的面积为S,求S+最大值
定义:已知函数在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数在[m,n] (m<n)上具有“DK”性质. (1)判断函数在[1,2]上是否具有“DK”性质,说明理由; (2)若在[a,a+1]上具有“DK”性质,求a的取值范围.
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B. (1)求椭圆C的标准方程; (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
已知函数. (1)求函数的单调区间;(2)若在区间[-1,1]上的最大值为6,求在该区间上的最小值
如图,四棱锥P-ABCD的底面为矩形,侧棱PD垂直于底面,PD=DC=2BC,E为棱PC上的点,且平面BDE⊥平面PBC. (1)求证:E为PC的中点; (2)求二面角A-BD-E的大小.