如图,设椭圆 (a>b>0)的右焦点为F(1,0),A为椭圆的上顶点,椭圆上的点到右焦点的最短距离为1.过F作椭圆的弦PQ,直线AP,AQ分别交直线xy2=0于点M,N.(Ⅰ)求椭圆的方程;(Ⅱ)求当|MN|最小时直线PQ的方程.
已知a、b、c分别为△ABC三个内角A、B、C的对边,acosC+asinC-b-c=0.(1)求A;(2)若a=2,△ABC的面积为,求b、c.
在△ABC中,A、B、C所对的边分别是a、b、c,且bcosB是acosC、ccosA的等差中项.(1)求B的大小;(2)若a+c=,b=2,求△ABC的面积.
已知△ABC中,,试判断△ABC的形状.
在△ABC中,a、b、c分别表示三个内角∠A、∠B、∠C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.
在△ABC中,角A、B、C所对的边分别是a、b、c,已知c=2,C=.(1)若△ABC的面积等于,求a、b;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.