已知 a , b , c 分别是 ∆ A B C 内角 A , B , C 的对边, sin 2 B = 2 sin A sin C . (Ⅰ)若 a = b ,求 cos B . (Ⅱ)若 B = 90 ° 且 a = 2 ,求 ∆ A B C 的面积.
(本小题满分12分) 如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点. (Ⅰ)求证:DA⊥平面PAC; (Ⅱ)点G为线段PD的中点,证明CG∥平面PAF; (Ⅲ)求三棱锥A—CDG的体积.
(本小题满分12分) 已知数列是等比数列,,且是的等差中项. (Ⅰ) 求数列的通项公式; (Ⅱ)若,求数列的前n项和.
(本小题满分10分) 在中, (Ⅰ)求的值 ;(Ⅱ)求的值。
已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得,求的取值范围.
在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于. (Ⅰ)求动点P的轨迹方程; (Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。