如图 ,在直角梯形 A B C D 中, A D ∥ B C , ∠ B A D = π 2 , A B = B C = 1 , A D = 2 , 是 A D 的中点, O 是 A C 与 B E 的交点.将 △ A B E 沿 B E 折起到 △ A 1 B E 的位置,如图 .
(Ⅰ)证明: C D ⊥ 平面 A 1 O C ; (Ⅱ)若平面 A 1 B E ⊥ 平面 B C D E ,求平面 A 1 B C 与平面 A 1 C D 夹角的余弦值.
((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面,,、分别是棱、的中点. (1)求证:;(2) 求直线与平面所成的角的正切值
(本小题满分14分)等比数列的各项均为正数,且 (1)求数列的通项公式. (2)设 求数列的前项和.
(本小题满分14分)设 (1)求函数的单调递增区间; (2)在中,若,且,,求的面积.
已知函数,设。 (Ⅰ)求F(x)的单调区间; (Ⅱ)若以)图象上任意一点为切点的切线的斜率 恒 成立,求实数的最小值。 (Ⅲ)是否存在实数,使得函数的图象与的图象恰 好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响. (Ⅰ)求他不需要补考就可获得证书的概率; (Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.