如图,在三棱台 D E F - A B C 中, A B = 2 D E , G , H 分别为 A C , B C 的中点.
(Ⅰ)求证: B D / / 平面 F G H ; (Ⅱ)若 C F ⊥ 平面 A B C , A B ⊥ B C , C F = D E , ∠ B A C = 45 ° ,求平面 F G H 与平面 A C F D 所成的角(锐角)的大小.
设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}. (1)求I的长度(注:区间(α,β)的长度定义为β-α); (2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I的长度的最小值.
如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4. (1)求证:BE⊥平面DEFG; (2)求证:BF∥平面ACGD; (3)求二面角F-BC-A的余弦值.
)如图所示,在三棱锥P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=. (1)证明:△PBC为直角三角形; (2)求直线AP与平面PBC所成角的正弦值.
如图所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点. (1)求证:BE∥平面PAD; (2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.
已知n∈N*,数列{dn}满足dn=,数列{an}满足an=d1+d2+d3+…+d2n.又知数列{bn}中,b1=2,且对任意正整数m,n,. (1)求数列{an}和数列{bn}的通项公式; (2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和T2013.