设椭圆E的方程为x2a2+y2b2=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足BM=2MA,直线OM的斜率为510. (Ⅰ)求E的离心率e; (Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为72,求E的方程.
(本小题满分14分)若, 求满足的的值。
(本小题满分14分)(1)已知函数求(2)已知函数与分别由下表给出:
用分段函数表示,并画出函数的图象。
(本小题满分14分)(1)设集合A={},B={},求集合,;(2)已知集合,, 求非零实数的值。
(本小题满分16分)已知函数,(1)若在上的最大值为,求实数的值;(2)若对任意,都有恒成立,求实数的取值范围;(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
(本小题满分16分)已知椭圆的离心率为,一条准线.(1)求椭圆的方程;(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.①若,求圆的方程;②若是l上的动点,求证:点在定圆上,并求该定圆的方程.