设椭圆E的方程为x2a2+y2b2=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足BM=2MA,直线OM的斜率为510. (Ⅰ)求E的离心率e; (Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为72,求E的方程.
已知函数的一个极值点. (Ⅰ)求; (Ⅱ)求函数的单调区间; (Ⅲ)若的图象与x轴有且只有3个交点,求b的取值范围.
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点. (Ⅰ)求证:AF∥平面PCE; (Ⅱ)求证:平面PCE⊥平面PCD; (Ⅲ)求三棱锥C-BEP的体积.
已知 (1)当时,求函数的最小正周期; (2)当∥时,求的值.
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4. (1)求函数f(x)的解析式; (2)设k>1,解关于x的不等式;
等比数列{an}中a1=8,且bn=log2 an数列{bn}的前n项和为Sn ,且S7≠S8 又S7最大. ①求证:{bn}成等差数列②求数列{an}的公比q的取值范围.