如图所示,在多面体 A 1 B 1 D 1 D C B A ,四边形 A A 1 B 1 B , A D D 1 A 1 , A B C D 均为正方形, E 为 B 1 D 1 的中点,过 A 1 , D , E 的平面交 C D 1 于 F .
(Ⅰ)证明: E F ∥ B 1 C ; (Ⅱ)求二面角 E - A 1 D - B 1 余弦值.
已知函数,求的最大值和最小值。
在区间[0,1]上给定曲线,试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小。
设定义在R上的奇函数,且对任意实数,恒有,当时,。 (1)求证:是周期函数。(2)当时求的解析式。 (3)计算……+。
求下列各函数的导数。 (1)(2)
已知函数() (1) 当a = 0时, 求函数在区间[0, 2]上的最大值; (2) 若函数在区间[0, 2]上的最大值为2, 求a的取值范围.