(本小题满分8分) 已知抛物线C:y=-x2+4x-3 .(1)求抛物线C在点A(0,-3)和点B(3,0)处的切线的交点坐标;(2)求抛物线C与它在点A和点B处的切线所围成的图形的面积.
(本小题满分15分)已知曲线,若按向量作平移变换得曲线;若将曲线按伸缩系数向着轴作伸缩变换,再按伸缩系数3向着轴作伸缩变换得到曲线(1)求曲线及方程;(2)若为上一点,为上任意一点,且与曲线相切(为切点),求线段的最大值及对应的点坐标.
(本小题满分14分)已知二项式(n∈N* , n≥2).(1)若该二项式的展开式中前三项的系数成等差数列,求正整数的值;(2)在(1)的条件下,求展开式中x4项的系数.
(本小题满分14分)如图,在几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA⊥AB,M是EC的中点,EA=DA=AB=2CB.(1)求证:DM⊥EB; (2)求异面直线AB与CE所成角的余弦值.
(本题16分)如图,某大风车的半径为2米,每12秒沿逆时针方向旋转一周,它的最底点离地面1米,风车圆周上一点A从最底点开始,运动t秒后与地面距离为h米,(1)求函数h=f(t)的关系式, 并在给出的方格纸上用五点作图法作出h=f(t)在一个周期内的图象(要列表,描点);(2) A从最底点开始, 沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?
(本题16分)函数在同一个周期内,当时取最大值1,当时,取最小值。(1)求函数的解析式(2)函数的图象经过怎样的变换可得到的图象?(3)若函数满足方程求在内的所有实数根之和.