商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同. (1)若他去买一瓶饮料,则他买到汁的概率是 ;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
某公司近三年每年的资金投入总额与每年利润统计图如下,其中利润率=利润÷资金投入总额×100%.已知2010年的利润等于2009年、2010年两年的资金投放差额,并且三年的利润每年上升20万元.请在乙图中左侧横线上填上相关利润数据请在丙图中大致画出三年的利润情况(标明度数、年份,不需标示百分比)试确定哪一年的利润率最高?
如图,在方格纸中,点C在直线AB外.请过C点画AB的垂线;过C点画AB的平行线CH;通过你的观察,直接写出CH与CB的位置关系.
已知直角梯形纸片OABC在平面直角坐标系中的位置如图①所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2),C(0,2),点P在线段OA上(不与O、A重合),将纸片折叠,使点A落在射线AB上(记为点A’),折痕PQ与射线AB交于点Q,设OP=x,折叠后纸片重叠部分的面积为y.(图②供探索用)求∠OAB的度数;求y与x的函数关系式,并写出对应的x的取值范围;y存在最大值吗?若存在,求出这个最大值,并求此时x的值;若不存在,说明理由.
如图1,P是∠BAC平分线上一点,PD⊥AC,垂足为D,以P为圆心,PD为半径作圆.AB与⊙P相切吗?为什么?若平行于PD的直线MN与⊙P相切于T,并分别交AB、AC于M、N,设PD=2,∠BAC=60°,求线段MT的长(结果保留根号).
)图①中是一座钢管混凝土系杆拱桥,桥的拱肋ACB可视为抛物线的一部分(如图②),桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋的跨度AB为200米,与AB中点O相距20米处有一高度为48米的系杆.求正中间系杆OC的长度;若相邻系杆之间的间距均为5米(不考虑系杆的粗细),则是否存在一根系杆的长度恰好是OC长度的一半?请说明理由.