如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),将△ABC绕原点O旋转180度得到△A1B1C1.平移△ABC得到△A2B2C2,使点A移动到点A2(0,2),结合所给的平面直角坐标系解答下列问题: (1)请画出△A1B1C1; (2)请直接写出点B2、C2的坐标; (3)在△ABC、△A1B1C1、△A2B2C2中 ,△A2B2C2与 成中心对称,其对称中心的坐标为 .
如图,已知E是ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F. (1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.
如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象. (1)求A、B、P三点的坐标; (2)求四边形PQOB的面积.
李老师为了了解本班学生作息时间,调查班上50名学生上学路上所花的时间,他发现学生所花时间都少于50min,然后将调查数据整理,作出如图15所示的频数直方图的一部分. (1)补全频数直方图; (2)该班学生在路上花费的时间在哪个范围内最多? (3)该班学生上学路上花费时间在30min以上(含30min)的人数占全班人数的百分比是多少?
如图,在离水面高度(AC)为2米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米的速度收绳子. 问:(1)未开始收绳子的时候,图中绳子BC的长度是多少米? (2)收绳2秒后船离岸边多少米?(结果保留根号)
如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B. (1)求三角形ABC的面积. (2)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由. (3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图②,求∠AED的度数.