各项为正的数列满足,,(1)取,求证:数列是等比数列,并求其公比;(2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值
甲、乙两名同学在5次英语口语测试中的成绩统计如下面的茎叶图所示. (1)现要从中选派一人参加英语口语竞赛,从统计学角度,你认为派哪位学生参加更合适,请说明理由; (2)若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
如图,四棱锥中,底面为平行四边形,,,⊥底面. (1)证明:平面平面; (2)若,求与平面所成角的正弦值.
已知函数,数列满足, (1)求数列的通项公式; (2)若数列满足…+,求
已知函数, 其中,,其中若相邻两对称轴间的距离不小于 (1)求的取值范围; (2)在中,、、分别是角A、B、C的对边,,当最大时,求的面积。
在△OAB中,O为坐标原点,A(1,cosθ),B(sinθ,1) θ∈,则△OAB的面积达到最大值时,θ=