(本题满分15分,第(1)小题6分,第(2)小题9分)如图所示,某市拟在长为道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图像,且图像的最高点为,赛道的后一部分为折线段,且.(1)求、两点间的直线距离;(2)求折线段赛道长度的最大值.
在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切, (Ⅰ)求圆的方程; (Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)
为了调查学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为,经过数据处理,得到如下频率分布表
(Ⅰ)求频率分布表中未知量,,,的值 (Ⅱ)从样本中视力在和的所有同学中随机抽取两人,求两人视力差的绝对值低于的概率
()如图,四棱锥中,平面,底面是平行四边形,,是的中点 (Ⅰ)求证: (Ⅱ)试在线段上确定一点,使,求三棱锥的体积.
在△ABC中,分别为角所对的三边,已知 (Ⅰ)求的值 (Ⅱ)若,求边的长.
各项均为正数的等比数列中, (Ⅰ)求数列通项公式; (Ⅱ)若等差数列满足,求数列的前项和。