已知F1F2是椭圆=" 1" (a > b > 0)的两个焦点, O为坐标原点, 点 P(-1,)在椭圆上, 且是以F1F2为直径的圆, 直线: y=kx+m与⊙O相切, 并且与椭圆交于不同的两点A、 B.(Ⅰ)求椭圆的标准方程;(Ⅱ)当 , 且满足时, 求弦长|AB|的取值范围.
在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;(2)求数列的通项公式,假设,试求数列的前项和;(3)若对一切恒成立,求的取值范围。
已知数列中,,,数列中,,且点在直线上。(1)求数列的通项公式;(2)求数列的前项和;(3)若,求数列的前项和;
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。(1)到下午6时最后一辆车行驶了多长时间? (2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?
在中,已知,;(1)求的值;(2)若,求的值;
在等比数列中,,;(1)求数列的通项公式; (2)求数列的前项和