(本小题满分12分)某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为,,,,.(1)求频率分布直方图中的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在上的概率.
设 f x = x 3 3 ,对任意实数 t ,记 g t x = t 2 3 x - 2 3 t . (I)求函数 y = f x - g t x 的单调区间; (II)求证:(ⅰ)当 x > 0 时, f x ≥ g t x 对任意正实数 t 成立; (ⅱ)有且仅有一个正实数 x 0 ,使得 g x x 0 ≥ g t x 0 对任意正实数 t 成立.
已知数列 { a n } 中的相邻两项 a 2 k - 1 a 2 k ,是关于的方程 x 2 - ( 3 k + 2 k ) x + 3 k · 2 k = 0 的两个根,且 a 2 k - 1 ≤ a 2 k ( k = 1 , 2 , 3 , . . . ) .
(I)求 a 1 , a 3 , a 5 , a 7 ; (II)求数列 { a n } 的前 2 n 项和 S 2 n ; (Ⅲ)记 f ( n ) = 1 2 ( | sin n | sin n + 3 ) , T n = ( - 1 ) f ( 2 ) a 1 a 2 + ( - 1 ) f ( 3 ) a 3 a 4 + ( - 1 ) f ( 4 ) a 5 a 6 + . . . + ( - 1 ) f ( n + 1 ) a 2 n - 1 a 2 n ,
求证: 1 6 ≤ T n ≤ 5 24 ( n ∈ N * ) .
如图,直线 y = k x + b 与椭圆 x 2 4 + y 2 = 1 交于 A , B 两点,记 △ A O B 的面积为 S .
(I)求在 k = 0 , 0 < b < 1 的条件下, S 的最大值; (II)当 A B = 2 , S = 1 时,求直线 A B 的方程.
在如图所示的几何体中, E A ⊥ 平面 A B C , D B ⊥ 平面 A B C , A C ⊥ B C ,且 A C = B C = B D = 2 A E , M 是 A B 的中点.
(I)求证: C M ⊥ E M ; (II)求 C M 与平面 C D E 所成的角.
已知 △ A B C 的周长为 2 + 1 ,且 sin A + sin B = 2 sin C . (I)求边 A B 的长; (II)若 △ A B C 的面积为 1 6 sin C ,求角 C 的度数.