如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.
佳佳超市经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现佳佳超市要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
如图,抛物线交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N.(1)求点A,B的坐标;(2)证明:OP=PC
如图,在平面直角坐标系中,已知抛物线经过,两点,顶点为.(1)求、的值;(2)将绕点顺时针旋转90°后,点A落到点C的位置,该抛物线沿轴上下平移后经过点,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足△的面积是△面积的3倍,求点的坐标.
根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?
有一个二次函数的图象,三位学生分别说出了它的一些特点. 甲:对称轴是直线x=4; 乙:与x轴两交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3; 请写出满足上述全部特点的二次函数解析式: .