已知关于x的方程x2+ax+a-2=0.(1)若该方程的一个根为1,求a的值及该方程的另一根(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
由多项式乘法: ( x + a ) ( x + b ) = x 2 + ( a + b ) x + ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式: x 2 + ( a + b ) x + ab = ( x + a ) ( x + b ) .
示例:分解因式: x 2 + 5 x + 6 = x 2 + ( 2 + 3 ) x + 2 × 3 = ( x + 2 ) ( x + 3 ) .
(1)尝试:分解因式: x 2 + 6 x + 8 = ( x + ) ( x + ) ;
(2)应用:请用上述方法解方程: x 2 − 3 x − 4 = 0 .
为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本校学生对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).
态度
频数(人数)
频率
非常喜欢
5
0.05
喜欢
0.35
一般
50
n
不喜欢
10
合计
m
l
(1)在上面的统计表中 m = , n = .
(2)请你将条形统计图补充完整;
(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?
如图,在 ▱ ABCD 中, DE = CE ,连接 AE 并延长交 BC 的延长线于点 F .
(1)求证: ΔADE ≅ ΔFCE ;
(2)若 AB = 2 BC , ∠ F = 36 ° .求 ∠ B 的度数.
从 − 2 ,1,3这三个数中任取两个不同的数,作为点的坐标.
(1)写出该点所有可能的坐标;
(2)求该点在第一象限的概率.
“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?