已知抛物线的顶点(-1,-4)且过点(0,-3),直线l是它的对称轴。(1)求此抛物线的解析式;(2)设抛物线交x轴于点A、B(A在B的左边),交y轴于点C,P为l上的一动点,当△PBC的周长最小时,求P点的坐标。(3)在直线l上是否存在点M,使△MBC是等腰三角形,若存在,直接写出符合条件的点M的坐标;若不存在请说明理由。
如图是函数与函数在第一象限内的图象,点是的图象上一动点,轴于点A,交的图象于点,轴于点B,交的图象于点. (1)求证:D是BP的中点; (2)求出四边形ODPC的面积.
已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E. (1)求证:AC·AD=AB·AE; (2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图). (1)将统计图补充完整; (2)求出该班学生人数; (3)若该校共有学生3500名,请估计有多少人选修足球? (4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). (1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1; (2)请画出△ABC关于原点对称的△A2B2C2; (3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
已知关于x的一元二次方程有两个相等的实数根. (1)求m的值; (2)解原方程.