如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴的交于C点,其中A点的坐标为(-3,0).(1)求抛物线的表达式;(2)若将此抛物线向右平移m个单位,A、B、C三点在坐标轴上的位置也相应的发生移动,在移动过程中,△BOC能否成为等腰直角三角形?若能,求出m的值,若不能,请说明理由.
如图,∠CDG = ∠B,AD平分∠BAC,请说明△AGD是等腰三角形。请将过程填写完整。 解:∵ ∠CDG = ∠B ∴ DG∥AB() ∴ ∠1 = () ∵ AD平分∠BAC ∴ () ∴∠1 = ∠2 ∴△AGD是等腰三角形()
如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒. (1)出发2秒后,求△ABP的周长. (2)问t为何值时,△BCP为等腰三角形? (3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=4. (1)试求两平行线EF与AD之间的距离;(2)试求BD的长.
已知一个几何体的三视图为一个直角三角形,和两个长方形,有关的尺寸如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.
在△ABC中,CE⊥AB于E,在△ABC外作△ACD,使∠CAD=∠CAB,且DC=BC,过C作CF⊥AD,交AD的延长线于F. (1)说明CE=CF的理由; (2)说明BE=DF的理由.