如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值 ▲ (直接写结果).
如图,⊙O中,AB、CD是⊙O的直径,F是⊙O上一点,连接BC、BF,若点B是弧CF的中点. (1)求证:△ABF≌△DCB; (2)若CD⊥AF,垂足为E,AB=10,∠C=60°,求EF的长.
九年级五班某同学为了测量某市电视台的高度,进行了如下操作: (1)在点A处安置测倾器,测得塔顶C的仰角∠CAB=30°; (2)他沿着电视塔方向前进了80米到达B处,又测得塔顶C的仰角为60°; (3)量出测倾器AF的高度AF=1.5米.根据测量数据,请你计算出电视塔的高度CE约为多少米.(精确到0.1米,≈1.73)
已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=. (1)求k的值和边AC的长; (2)求点B的坐标.
先化简,再求值:,其中a=-3.
如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M. (1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB. (2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形. ①问:-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由. ②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.