如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值 ▲ (直接写结果).
已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点. (1)请写出b、c的关系式; (2)设直线y=7与该抛物线的交点为A、B,求AB的长; (3)若P(a,﹣a)不在抛物线y=x2﹣2bx+c上,请求出b的取值范围.
一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上. (1)求证:△AEF∽△ABC; (2)求这个正方形零件的边长; (3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF. (1)求证:AB=AC; (2)若AC=3cm,AD=2cm,求DE的长.
如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G. (1)求证:△ABE∽△DEF; (2)若正方形的边长为4,求BG的长.
如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线. (1)求二次函数的解析式; (2)点P在x轴正半轴上,且PA=PC,求OP的长.