已知椭圆C:x2a2+y2b2=1a>b>0 的离心率为22,点2,2在C上. (Ⅰ)求C的方程; (Ⅱ)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.
已知命题:函数在[-2,2]内有且仅有一个零点.命题:在区间[]内有解.若命题“且”是假命题,求实数的取值范围.
已知锐角中内角、、所对边的边长分别为、、,满足,且.(Ⅰ)求角的值;(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若关于的不等式恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程在直角坐标系中,直线的方程为,曲线的参数方程为(为参数).(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以x轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;(2)设点为曲线上的一个动点,求它到直线的距离的最小值.
选修4-1:几何证明选讲如图,是圆的直径,是圆上两点,与相交于点,,是圆的切线,点在的延长线上,且.求证:(1)四点共圆;(2).