已知椭圆C:x2a2+y2b2=1a>b>0 的离心率为22,点2,2在C上. (Ⅰ)求C的方程; (Ⅱ)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.
(本小题满分16分)如图①,,分别是直角三角形边和的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证: (1)直线平面; (2)平面平面.
(本小题满分14分)已知函数,且. (1)判断的奇偶性并说明理由; (2)判断在区间上的单调性,并证明你的结论; (3)若在区间上,不等式恒成立,试确定实数的取值范围.
(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB; (2)平面PAD⊥平面PDC.
(本小题满分14分)已知集合A={︱3<≤7},B={x︱2<<10},C={︱<} ⑴ 求A∪B,(CuA)∩B ⑵ 若A∩C≠,求a的取值范围
(本题满分13分) 已知函数在上是减函数,在上是增函数,函数在上有三个零点. (1)求的值; (2)若1是其中一个零点,求的取值范围; (3)若,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。