已知椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > o ) 过点 ( 0 , 2 ) ,且离心率为 2 2 . (Ⅰ)求椭圆 E 的方程; (Ⅱ)设直线 x = m y - 1 , ( m ? R ) 交椭圆 E 于 A , B 两点,判断点 G ( - 9 4 , 0 ) 与以线段 A B 为直径的圆的位置关系,并说明理由.
.如图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求在射线上,在射线上,且过点,其中米,米. 记三角形花园的面积为S. (Ⅰ)当的长度是多少时,S最小?并求S的最小值. (Ⅱ)要使S不小于平方米,则的长应在什么范围内?
(本题14分)已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab. (1)求cosC; (2)若c=2,求△ABC面积的最大值.
(本题14分)已知P(2,1),直线l:x-y+4=0. (1)求过点P与直线l平行的直线方程; (2) 求过点P与直线l垂直的直线方程.
(本大题14分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点. (1)求证:B1D1∥面EFG (2)求证:平面AA1C⊥面EFG.
(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12. (1)求数列{an}的通项公式; (2)令bn= an3n,求{bn}的前n项的和Tn.