已知椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > o ) 过点 ( 0 , 2 ) ,且离心率为 2 2 . (Ⅰ)求椭圆 E 的方程; (Ⅱ)设直线 x = m y - 1 , ( m ? R ) 交椭圆 E 于 A , B 两点,判断点 G ( - 9 4 , 0 ) 与以线段 A B 为直径的圆的位置关系,并说明理由.
已知函数为奇函数,为常数, (1)求实数的值; (2)证明:函数在区间上单调递增; (3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
连续抛两次质地均匀的骰子得到的点数分别为和,将作为Q点的横、纵坐标, (1)记向量的夹角为,求的概率; (2)求点Q落在区域内的概率.
已知直三棱柱中,,点M是的中点,Q是AB的中点, (1)若P是上的一动点,求证:; (2)求二面角大小的余弦值.
在中,角A、B、C所对的边分别是,已知,, (1)求的值; (2)若,求的值.
(本小题满分12分) (1)已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么? (2)若方程ax2-x-1=0在(0,1)内恰有一解,求实数a的取值范围.