(本小题满分14分) 已知命题:在上定义运算:.不等式对任意实数恒成立;命题:若不等式对任意的恒成立.若为假命题,为真命题,求实数的取值范围.
已知U=R,A={x|-1≤x≤3},B={x|x-a>0}. (1)若AÍB,求实数a的取值范围; (2) 若A∩B≠Æ,求实数a的取值范围.
计算:2log32-log3+log38-
(本小题满分14分)已知函数,.(1)设(其中是的导函数),求的最大值;(2)证明: 当时,求证:;(3)设,当时,不等式恒成立,求的最大值.
(本小题满分12分)已知椭圆C: (a>b>0)的离心率为,短轴一个端点到右焦点的距离为(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
(本小题满分13分)设数列的前项和为,点在直线上,(为常数,,).(1)求;(2)若数列的公比,数列满足,,,求证:为等差数列,并求;(3)设数列满足,为数列的前项和,且存在实数满足,求的最大值.