(本小题满分14分)某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台.现销售给A地10台,B地8台.已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;(2)若总运费不超过9000元,问共有几种调运方案;(3)求出总运费最低的调运方案及最低的费用.
如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.⑴证明:平面SBD⊥平面SAC;⑵证明:直线MN//平面SBC.
已知椭圆>b>的离心率为且椭圆上一点到两个焦点的距离之和为.斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m). (1)求椭圆的标准方程; (2)求m的取值范围. (3)试用m表示△MPQ的面积S,并求面积S的最大值.
已知函数 (1)求函数的极值点; (2)若直线过点(0,—1),并且与曲线相切,求直线的方程; (3)设函数,其中,求函数在上的最小值.(其中e为自然对数的底数)
. 观察下表: 1, 2,3, 4,5,6,7, 8,9,10,11,12,13,14,15, …… 问:(1)此表第n行的第一个数与最后一个数分别是多少? (2)此表第n行的各个数之和是多少? (3)2012是第几行的第几个数?
. 如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,BAD=60°. (1)证明:面PBD⊥面PAC; (2)求锐二面角A—PC—B的余弦值.