已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于两点,是中点. (Ⅰ)当与垂直时,求证:过圆心;(Ⅱ)当时,求直线的方程;(Ⅲ)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.
【选修4—2:矩阵与变换】(本小题满分10分)已知点P(a,b),先对它逆时针旋转,再作N对应的变换,得到的点的坐标为(8,),求实数a,b的值.
【选修4—1几何证明选讲】(本小题满分10分)如图,已知AE交BC于点D,交△ABC的外接圆于点E ,且ABACADAE.求证:AE为△ABC的内角A的平分线.
(本小题满分16分)已知函数,.(1)当时,,求的单调区间;(2)当时,若,,求证:.
(本小题满分16分)设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足(). (1)求数列的通项公式; (2)试确定的值,使得数列为等差数列; (3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列. 设是数列 的前项和,试求满足的正整数.
(本小题满分16分)已知为椭圆:上任一点,为椭圆的左、右焦点,,离心率为. (1)求椭圆的方程;(2)若直线与椭圆交于两点,且线段AB的中点在直线上,为坐标原点,求三角形面积的最大值.