(本题10分)在平面直角坐标系中,对于任意三点、、的“矩面积”,给出如下定义:“水平底”:任意两点横坐标差的最大值,“铅垂高”:任意两点纵坐标差的最大值,则“矩面积”.例如:三点坐标分别为,,,则“水平底”,“铅垂高”,“矩面积”.(1)已知点,,.①若、、三点的“矩面积”为,求点的坐标;②、、三点的“矩面积”的最小值为 .(2)已知点,,,其中.若、、三点的“矩面积”的为,求的取值范围;
如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为50m,求这栋楼的高度.(取1.414,取1.732)
(第(1)题4分、第(2)题5分,共9分)(1) 计算:+. (2)抛物线的部分图象如图所示, ①求出函数解析式; ②写出与图象相关的2个正确结论: (对称轴方程,图象与x正半轴、y轴交点坐标例外)
和是绕点旋转的两个相似三角形,其中与、与为对应角.(1)如图1,若和分别是以与为顶角的等腰直角三角形,且两三角形旋转到使点、、在同一条直线上的位置时,请直接写出线段与线段的关系;(2)若和为含有角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段与线段的关系,并说明理由;(3)若和为如图3的两个三角形,且=,,在绕点旋转的过程中,直线与夹角的度数是否改变?若不改变,直接用含、的式子表示夹角的度数;若改变,请说明理由.
(本小题满分7分) 如图,已知抛物线y1=-x2+bx+c经过A(1,0),B(0,-2)两点,顶点为D.(1)求抛物线y1 的解析式;(2)将△AOB绕点A逆时针旋转90°后,得到△AO′ B′ ,将抛物线y1沿对称轴平移后经过点B′ ,写出平移后所得的抛物线y2 的解析式;(3)设(2)的抛物线y2与轴的交点为B1,顶点为D1,若点M在抛物线y2上,且满足△MBB1的面积是△MDD1面积的2倍,求点M的坐标.
(本题7分)对于二次函数,如果当取任意整数时, 函数值都是整数,此时称该点(,)为整点,该函数的图象为整点抛物线 (例如:).(1)请你写出一个整点抛物线的解式.(不必证明);(2)请直接写出整点抛物线与直线围成的阴影图形中 (不包括边界)所含的整点个数.