(本小题满分12分) 已知函数.(1)当时,求函数的单调区间和极值;;(2) 若恒成立,求实数的值。
如图,已知四棱锥中,底面为菱形,平面,,分别是的中点.(1)证明:平面;(2)取,若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围。
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求的值;(2)把在前排就坐的高二代表队6人分别记为,现随机从中抽取2人上台抽奖,求和至少有一人上台抽奖的概率;(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
在直三棱柱中,分别是的中点.(1)求证:平面;(2)求多面体的体积.
已知离心率为的椭圆()过点 (1)求椭圆的方程;(2)过点作斜率为直线与椭圆相交于两点,求的长.