(本小题满分14分)已知函数,(其中常数)(Ⅰ)当时,求的极大值;(Ⅱ)试讨论在区间上的单调性;(Ⅲ)当时,曲线上总存在相异两点、,使得曲线在点、处的切线互相平行,求的取值范围.
(本小题满分12分) 已知椭圆方程为,射线(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M). (Ⅰ)求证直线AB的斜率为定值; (Ⅱ)求△面积的最大值.
汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对排放量超过的型新车进行惩罚.某检测单位对甲、乙两类型品牌车各抽取辆进行排放量检测,记录如下(单位:).
经测算发现,乙品牌车排放量的平均值为. (Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合排放量的概率是多少? (Ⅱ)若,试比较甲、乙两类品牌车排放量的稳定性.
如图,已知四棱锥,底面为菱形,平面,,、分别是、的中点. (1)判定与是否垂直,并说明理由。 (2)设,若为上的动点,若面积的最小值为,求四棱锥的体积。
已知数列的前项和为,且(). (Ⅰ)证明:数列是等比数列; (Ⅱ)若数列满足,且,求数列的通项公式.
在中,内角A,B,C的对边分别是 (I)求角C的大小; (II)若求a,b.