(本小题满分14分)已知函数,(其中常数)(Ⅰ)当时,求的极大值;(Ⅱ)试讨论在区间上的单调性;(Ⅲ)当时,曲线上总存在相异两点、,使得曲线在点、处的切线互相平行,求的取值范围.
设. (1)判断函数y=f(x)的奇偶性; (2)求函数y=f(x)的定义域和值域.
设关于x的函数y=2cos2x﹣2acosx﹣(2a+1)的最小值为f(a),试确定满足的a的值,并对此时的a值求y的最大值.
设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线. (I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得. (II)求函数y=f(x)的单调增区间; (III)画出函数y=f(x)在区间[0,π]上的图象.
(1)已知tanα=2,求+ sin2α﹣3sinα•cosα的值。 (2)已知角α终边上一点P(﹣,1),求的值
已知关于x的方程的两根为sinθ和cosθ: (1)求的值; (2)求m的值.