二次函数的图象经过点A(﹣1,4),B(1,0),经过点B,且与二次函数交于点D.过点D作DC⊥x轴,垂足为点C.(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN的最大值.
如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN. (1)求证:四边形AMDN是平行四边形; (2)填空: ①当AM的值为 时,四边形AMDN是矩形; ②当AM的值为 时,四边形AMDN是菱形.
如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米). (参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
已知关于x的一元二次方程x2+2x+2k-2=0有两个不相等的实数根. (1)求k的取值范围; (2)若k为正整数,求该方程的根.
先化简:1-÷,再选取一个合适的a值代入计算.
如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C. (1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.