已知二次函数的图象经过,两点.(1)求对应的函数表达式;(2)将先向左平移1个单位,再向上平移4个单位,得到抛物线,将对应的函数表达式记为,求对应的函数表达式;(3)设,在(2)的条件下,如果在≤x≤a内存在某一个x的值,使得≤成立,利用函数图象直接写出a的取值范围.
计算: (-8)+10+2+(-1);
计算: (1)+(-); (2)(-)+(-); (3)(-)+; (4)(-)+(-); (5)+(-2); (6)(-)+(-1); (7)(-1)+(-2); (8)3+(-1);
计算: (1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3; (4)3.92+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31); (7)(-9.18)+6.18; (8)4.23+(-6.77);
计算: (1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9); (5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37;
请根据下列的实际问题取值: 某班有50名同学在一位老师的带领下准备秋游野餐,现知某种锅最多只能供5人烧饭.(1)问至少应准备几只这种锅,才能秋游野餐;(2)活动时,若规定6人才能表演一个小品且每人只能表演一次,则这次秋游中,该班最多能表演几个小品.