阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且,,求的度数.小敏是这样解决问题的:如图1,把,放在正方形网格中,使得,,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰直角三角形,因此可求得="∠ABC" = °.请参考小敏思考问题的方法解决问题:如果,都为锐角,当,时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=,由此可得=______°.
如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为_______(结果保留根号);②的长为_________(结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.
已知,□ABCD的两边AB、AD的长是关于X的方程x2-mx+=0的两个实根.(1)当为何值时,四边形ABCD是菱形?求出这时菱形的边长.(2)若AB的长为2,那么□ABCD的周长是多少?
如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道步行8000米到达C处,测得小区M位于C的北偏西60°方向,请你(不写作法,保留作图痕迹)找出支管道连接点N,使到该小区铺设的管道最短,并求出AN的长.
市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.
丹东市政府决定,从2011年起在全市开展创建全国文明城市,国家卫生城市,国家环保模范城市,国家园林城市“四城联创”活动.小东同学在全校随机调查了若干名学生对“四城联创”的了解程度,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题: (1)在这次调查活动中,一共调查了多少名学生;(2)在条形统计图中,将表示B、D的部分补充完整;(3)在扇形统计图中,计算出C部分所对应的圆心角的度数;(4)若该校有学生1200名,估计对“四城联创”了解程度为“熟悉” 的学生约有多少名?