如图,抛物线与y轴相交于点A(0,2),与x轴相交于B(4,0)C(,0)两点.直线l经过A、B两点.(1)分别求出直线l和抛物线相应的函数表达式;(2)平行于y轴的直线x=2交抛物线于点P,交直线l于点D.① 直线x=t(0≤t≤4)与直线l相交于点E,与抛物线相交于点F.若EF:DP=3:4, 求t的值;② 将抛物线沿y轴上下平移,所得的抛物线与y轴交于点A′,与直线x=2交于点P′.当P′O平分∠A′P′P时,求平移后的抛物线相应的函数表达式.
如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:(1)AC=AD; (2)CF=DF.
如图,直线CD与直线AB相交于点C,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P作PQ∥AB,交CD于点Q;过点P作PR⊥CD,垂足为R;(2)若∠DCB=120°,则∠QPR是多少度?并说明理由.
先化简,再求值:, 其中,.
如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC.求证:AB=DE.
如图,∠ABC=∠BCD,∠1=∠2,请问图中有几对平行线?并说明理由.