在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.(1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.
、(2011?常州)在下列实数中,无理数是( )
如图,已知直线l经过点A(1,0),与双曲线y= (x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平 行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N. (1)求m的值和直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA; (3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若 不存在,请说明理由.
(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点. (1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上; (2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么? (3)求a和k的值.
(10分)如图1,O为正方形ABCD的中心, 分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针 旋转角得到△E1OF1(如图2). (1)探究AE1与BF1的数量关系,并给予证明; (2)当=30°时,求证:△AOE1为直角三角形.
(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如: 它们的一个相同点:正五边形的各边相等,正六边形的各边也相等. 它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形. 请你再写出它们的两个相同点和不同点: 相同点: ①; ②. 不同点: ①; ②.