如图,点C是线段AB的中点,点D、E分别是线段AC、CB的中点.(1)若线段AB=10cm,求线段AC和线段DE的长度;(2)若线段AB=a,求线段DE的长度.(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.
解方程 2x+1=2-x
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN. (1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明. (2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,4),且过点B(-3,0) (1)写出抛物线C1与x轴的另一个交点M的坐标; (2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式; (3)写出阴影部分的面积S.
已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为的中点. (1)求证:AC是半圆O的切线; (2)若AD=6,AE=6,求BC的长.
如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分, (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.