已知二次函数.(1)求它的对称轴与轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为,与轴、轴的交点分别为A、B、C三点,连结AC、BC,若∠ACB=90°.①求此时抛物线的解析式;②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由.
如图, ΔABC 内接于 ⊙ O , ∠ CBG = ∠ A , CD 为直径, OC 与 AB 相交于点 E ,过点 E 作 EF ⊥ BC ,垂足为 F ,延长 CD 交 GB 的延长线于点 P ,连接 BD .
(1)求证: PG 与 ⊙ O 相切;
(2)若 EF AC = 5 8 ,求 BE OC 的值;
(3)在(2)的条件下,若 ⊙ O 的半径为8, PD = OD ,求 OE 的长.
某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的 60 % ,乙仓库所存原料的 40 % ,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.
(1)求甲、乙两仓库各存放原料多少吨?
(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元 / 吨和100元 / 吨.经协商,从甲仓库到工厂的运价可优惠 a 元 / 吨 ( 10 ⩽ a ⩽ 30 ) ,从乙仓库到工厂的运价不变,设从甲仓库运 m 吨原料到工厂,请求出总运费 W 关于 m 的函数解析式(不要求写出 m 的取值范围);
(3)在(2)的条件下,请根据函数的性质说明:随着 m 的增大, W 的变化情况.
如图,在 ▱ ABCD 中, AE ⊥ BC , AF ⊥ CD ,垂足分别为 E , F ,且 BE = DF .
(1)求证: ▱ ABCD 是菱形;
(2)若 AB = 5 , AC = 6 ,求 ▱ ABCD 的面积.
某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按 A , B , C , D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:
成绩等级
频数(人数)
频率
A
4
0.04
B
m
0.51
C
n
D
合计
100
1
(1)求 m = , n = ;
(2)在扇形统计图中,求“ C 等级”所对应圆心角的度数;
(3)成绩等级为 A 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.
如图,在平面直角坐标系中,已知 ΔABC 的三个顶点坐标分别是 A ( 1 , 1 ) , B ( 4 , 1 ) , C ( 3 , 3 ) .
(1)将 ΔABC 向下平移5个单位后得到△ A 1 B 1 C 1 ,请画出△ A 1 B 1 C 1 ;
(2)将 ΔABC 绕原点 O 逆时针旋转 90 ° 后得到△ A 2 B 2 C 2 ,请画出△ A 2 B 2 C 2 ;
(3)判断以 O , A 1 , B 为顶点的三角形的形状.(无须说明理由)