已知排水管的截面为如图所示的圆,半径为10,圆心到水面的距离是6,求水面宽.
如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.
如图,已知△OAB的顶点A(-6,0),B(0,2),O是坐标原点, 将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C点的坐标为 ;(2)设过A,D,C三点的抛物线的解析式为,求其解析式?(3)证明AB⊥BE.
如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为,则秋千踏板与地面的最大距离约为多少?(参考数据:≈0.8, ≈0.6)
用7m长的铝合金做成透光面积(矩形ABCD的面积)为2m2的“日”型窗框(AB>BC),求窗框的宽度?(铝合金的宽度忽略不计)
如图,有两个可以自由转动的均匀转盘,都被分成3等份,每份内均标有数字,小明和小亮用这两个转盘做游戏,游戏规则如下:分别转动转盘和,两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止),若和为偶数,则小明获胜;如果和为奇数,那么小亮获胜.(1)请画出树状图,求小明获胜的概率和小亮获胜的概率.(直接写出答案不给分)(2)通过(1)的计算结果说明该游戏的公平性.