为节约用水,某市打算出台一项水费收费措施,其中规定:每月每户用水量不超过7吨时,每吨水费收基本价3元;若超过7吨而不超过11吨时,超过部分水费加收100%;若超过11吨而不超过15吨时,超过部分的水费加收200%, , 现在设某户本月实际用水量为吨,应交水费为元.(1)试求出函数的解析式;(2)如果一户人家本月应交水费为39元,那么该户本月的实际用水量是多少?
一个口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试用概率说明理由.
如图,已知均在⊙O上,且为⊙O的直径。(1)求的值;(2)若⊙O的半径为,与交于点,且、为弧的三等分点,求的长.
已知函数,(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在区间()上存在一点,使得成立,求的取值范围.
已知椭圆的焦点在轴上,离心率,且经过点. (Ⅰ)求椭圆的标准方程;(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补.
四棱锥中,底面为平行四边形,侧面底面,为 的中点,已知, (Ⅰ)求证:; (Ⅱ)在上求一点,使平面; (Ⅲ)求三棱锥的体积.